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Abstract

The nature of zero-knowledge is re-examined and the evidence for the following belief is shown: the classic simulation

based definitions of zero-knowledge (simulation zero-knowledge) may be somewhat too strong to include some “nice” protocols in which

the malicious verifier seems to learn nothing but we do not know how to construct a zero-knowledge simulator for it. To overcome this

problem a new relaxation of zero-knowledge, reduction zero-knowledge, 1s introduced. It is shown that reduction zero-knowledge just lies

between simulation zero-knowledge and witness indistinguishability. Under the assumption of existence of one-way permutations a 4-round

public-coin reduction zero-knowledge proof system for NP is presented and in practice this protocol works in 3 rounds since the first verifi-

er’s message can be fixed once and for all.
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The notion of zero-knowledge (ZK) was first
put forward by Goldwasser et al. to illustrate situa-
tions where a prover reveals nothing other than the
verity of a given statement to an even malicious verifi-
er''). The definitions of zero-knowledge were exten-
sively investigated by Goldreich et al. (2] 2nd the gen-
erality of this notion was demonstrated by Goldreich
et al. by showing that any NP-statement can be
proven in zero-knowledge provided that commitment
schemes exist'®!. Subsequently, related notions have
been proposed, in particular, zero-knowledge argu-
ment, witness indistinguishability, zero-knowledge
proof of knowledge, non-interactive zero-knowledge.
For a good survey in this field, the readers are re-
ferred to Ref. [4]. By now, zero-knowledge has
played a central role in the field of cryptography and
is the accepted methodology to define and prove secu-
rity of various cryptographic tasks.

Informally speaking, a protocol (P, V) for a
language L is zero-knowledge if the view of an even
malicious verifier in its interaction with the honest
prover on input x € L can be simulated by a simulator
itself on r without any interactions. In the rest of
this paper we denote by classic simulation based ZK
simulation zero-knowledge. The view of the even ma-
licious verifier in its real interactions with the honest
prover is a transcript including all the messages ex-
changed between the honest prover and the malicious

verifier. That is, all the messages sent by the honest
prover and all the messages sent by the even malicious
verifier. We remark that as a privacy criterion zero-
knowledge is a quite strong requirement. For some
specific applications we may not need such a strong
privacy requirement or we may need a protocol with
some extra properties which are not guaranteed to be
preserved for zero-knowledge protocols (e.g. we may
wish the privacy property of our protocol can be pre-
served under parallel composition, which is not held
for zero-knowledge protocols[ﬂ ). For this purpose, a
relaxation of zero-knowledge, witness indistin-
guishability (WI), was put forward by Feige et
al. %1, Loosely speaking, a WI protocol is an interac-
tive system in which the view of any polynomial-size
verifier is “ computationally independent” of the wit-
ness used by the honest prover as its auxiliary private
input. Wl is a relaxation of ZK. It means all ZK pro-
tocols are also WI protocols. We remark that al-
though W1 is preserved under parallel composition but
in general it is believed that ZK is a significantly
stronger security notion than WI. That is, a WI pro-
tocol may lose much security in comparison with a ZK

protocol.

According to the definition of ZK, to simulate
the view of a malicious verifier the simulator needs to
generate all the messages sent by the honest prover
and all the messages sent by this malicious verifier.
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To simulate all the messages sent by the even mali-
cious verifier the simulator needs to incorporate this
verifier into its coding as a subroutine and normally
treats it as an oracle. The difficulty occurs when sim-
ulating the messages sent by the honest prover since
the simulator does not know the prover’s auxiliary
private input. The normal method employed by the
simulator, especially for constant-round zero-knowl-
edge protocol, is the rewinding technique developed
by Goldreich et al. U7,
technique it is normally required that there is a “de-

To facilitate the rewinding

termining” verifier step which determines some or all
of its subsequent behaviors in an execution of the pro-
tocol. This “determining” verifier step is typically
implemented by commitment schemes and can be
viewed as a “promise” made by the verifier that he
will learn nothing in his interactions with the prover.
Normally, without this determining step we do not
know how to construct a zero-knowledge simulator.
But in some cases this determining message seems to
only facilitate the simulator and without it the mali-
cious verifier does not seem to get more advantages.
This is more obvious in the Feige-Lapidot-Shamir
(FLS) paradigm!®! that was introduced in the context
of non-interactive zero-knowledge (NIZK ), and has
been extensively used in recent advances of zero-
knowledge. We will give the description of the FLS
paradigm and discuss the above phenomenon in detail
in Section 3.

In this paper, we overcome the above problems
by introducing another relaxation of zero-knowledge,
which we call reduction zero-knowledge. Our ap-
proach is based on the belief that the messages sent by
the honest prover play a much more important role in
the malicious verifier’ s ability of learning “knowl-
edge” from its interactions with the honest prover.
Informally speaking, a protocol 1 (P, Vi) is re-
duced to another protocol 2 (P,, V,) if all the mes-
sages the malicious verifier V; can extract from the
honest prover P; (that is, all the messages sent by
P{) in protocol 1 can also be extracted by a malicious

verifier V; from the honest prover P, in protocol 2.
We say protocol 1 is reduction zero-knowledge if pro-
tocol 1 can be reduced to protocol 2 and protocol 2 is
simulation zero-knowledge. Note that we do not re-
quire V; to get the whole view of V|". We just focus
on the messages from the honest prover and ignore
the messages from the malicious verifier. We remark
that this treatment is reasonable to compare the

“knowledge” extracting abilities for different mali-
cious verifiers in different protocols. On one hand, as
discussed above we believe that the honest prover’s
messages are critical for the malicious verifier to learn
“knowledge”. On the other hand, zero-knowledge is
a property of honest prover and it is hard or infeasible
to compare the behaviors of different malicious veri-

fiers in different protocols.

As we will show, reduction zero-knowledge just
lies between classic simulation zero-knowledge and
witness indistinguishability. There are two major
contributions of our reduction zero-knowledge. One is
that it introduces reduction between different proto-
cols and extends the approaches to characterize the
nature of zero-knowledge. Note that reduction is a
widely used paradigm in the field of computer sci-
ence. Another is that reduction zero-knowledge can
allow us to design more efficient protocols, especially
to simplify the verifier greatly, for which although
we do not know how to construct a zero-knowledge
simulator but it is believed that it loses little security
in comparison with a corresponding simulation zero-
knowledge protocol.

1 Preliminaries

In this section we recall the notions, the defini-
tions and the constructions that we will utilize in this

paper.

Definition 1 (negligible function). A function
£+ N—=1[0, 1] is negligible if for all polynomials
p(+), and for all sufficiently large £, f(&)< p—(lk—)

Definition 2 { probability ensembles). A proba-
bility ensemble X is a family X = { X, { ,> such that
X, is a probability distribution on some finite do-

main.

Definition 3 (computational indistinguishabi-
lity). Two probability ensembles { X, t,en and
{Y,!,cn are computational indistinguishable if for
every probabilistic polynomial time (PPT) algorithm
A and for all sufficiently large n, |Pr(A(X,)=1)
—-Pr(A(Y,)=1)| is negligible in = .

Definition 4 (statistical indistinguishability ).
The statistical difference between two distributions,

X and Y, is defined by (X, ¥) =3+ 3 [Pr[X =

al = Pr[Y = a]|. Two probability ensembles
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| X, l,en and | Y, |,en are statistical indistin-
guishable if for sufficiently large n A(X,,, Y, ) is neg-
ligible in = .

Note that if {X,1,enyand | Y, | ,en are statisti-
cal indistinguishable then there are no algorithms even
with unbounded computational power to distinguish
them with non-negligible probability.

Definition 5 (interactive proof system). A pair
of probabilistic machines, (P, V), is called an inter-
active proof system for L if V is polynomial-time and
the following conditions hold:

(1) Completeness. For every x € L, Pr[(P,
Wi(x)=1]=1.

(2) Soundness. For all sufficiently large » and
every r & L of length n and every interactive ma-
chine B (even with unbounded computational pow-
er), Pr[ (B, V)(x)=1] is negligible in =.

An interactive proof system is called a public-coin
proof system if at each round the prescribed verifier
can only send a random string to the prover.

Definition 6 { one-round perfect-binding bit
commitment). A perfect-binding bit commitment is a
pair of probabilistic polynomial-time algorithms (S,
R), satisfying:

(1) Completeness. V&, Yo, let c= Csv(lk,

v) and d = (v, s,), where C is a PPT commitment
algorithm that uses s, as its randomness and d is the
corresponding decommitment to ¢, it holds that

Pr[(c,d)<—R——S(lk, v):R(1%, ¢, v,d)=YES]

=1, where £ is a security parameter.

(2) Computational hiding. For every v, u of e-
qual p (& )-length, where p is a positive polynomial
and k£ is the security parameter, the random variables
Csv(lk, v) and Csu(lk, u ) are computationally indis-

tinguishable.

(3) Perfect binding. For every v, u of equal
p(%)-length, the random variables CSP (1%, v) and
C,u (1%, u) have a disjoint support. That is, for every
v, u, and m, if Pr[SSv (1%, v) = m ] and
Prl Ssu(lk, u) = m] are both positive then u = v and

Sy = S,

A one-round commitment scheme as above can

be constructed based on any one-way function'®.

Definition 7 { hash-based commitment scheme
HC). A hash-based commitment scheme (HC) is a
pair of probabilistic polynomial-time algorithms (S,
R), satisfying:

R

(1) Completeness. Y&, Vv, Pr[(c,d)
S(1*,v):R(1*, ¢, v,d)=YES] =1, where & is a
security parameter, ¢ =HC(1*, v) and HC is a PPT
hash-based commitment algorithm used by S.

(2) Statistical hiding. For every v, u of equal
p(k)-length, where p is a positive polynomial, the
random variables HC(1*%, v) and HC(1*, u) are sta-
tistically indistinguishable.

(3) Computational binding. For all PPT algo-
rithm ADV, and all sufficiently large £, Prl[(c, v,
R
vy, dy, da) ADV(1*):v,# v, AR(1%, ¢, v,
d,)=YES=R(1%, ¢, vy,d;)] is negligible in &.

The readers are referred to Ref. [9] for the con-
struction of such schemes, which are based on the as-
sumption that collision-free hash functions exist.

Protocol (coin flipping over the telephone) ™®).

Coin flipping over the telephone is a direct application
of commitment schemes and is the way to generate
random string via interactions. Suppose Alice and Bob
want a fair, common random-string: r in |0, 11%.
Using commitment schemes the approach is as fol-
lows: Alice uniformly selects a string v in {0, 11% and
sends y = C, (1%, v) to Bob, where C is the one-
round perfect binding commitment algorithm while
using s as its randomness. Then Bob uniformly se-
lects a string « in {0, 1}* and sends « in the clear to
Alice. At last Alice decommits to y (by sending (v,
s) to Bob) and the final common random string is r

=v @u.

We remark that in the above protocol if Bob is
honest then r is a truly random string. If Bob is ma-
licious but Alice is honest then r is pseudorandom
(that is, any PPT algorithm can not distinguish »
from a truly random string in 10, 1}* with non-negli-
gible probability) .

Definition 8 (zero-knowledge). Let (P, V) be
an interactive proof system for a language L. We de-

. P . -
note by view,,+ (x) a random variable describing the

transcript of messages exchanged between the honest
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prover P and the (malicious) verifier V" in an exe-
cution of the protocol on common input x. Then we
say that (P, V) is zero-knowledge if for every proba-
bilistic polynomial time interactive machine V" there
exists a probabilistic (expected) polynomial-time in-
teractive machine S such that the following two prob-
ability distributions are computationally indistin-
guishable: iviewS* (z)t,ep and 1SCx )l L. Ma-
chine S is called a zero-knowledge simulator for (P,
V). In the rest of this paper we refer to zero-knowl-
edge in this definition as simulation zero-knowledge.

Definition 9 { black-box zero-knowledge). Let
(P, V) be an interactive proof system for a language
L. We say that (P, V) is black-box zero-knowledge
if there exists a probabilistic (expected) polynomial-
time interactive machine S, such that for every prob-
abilistic polynomial time interactive machine V * and
for every 1 € L, the following two probability distri-
indistinguishable;

butions are computationally

{viewC-(I){IEL and 35".(1).‘1614. Machine S is

called a black-box zero-knowledge simulator for (P,

V).

Definition 10 ( non-interactive zero-knowledge
NIZK)}. Let NIP and NIV be two interactive ma-
chines and NIV is also probabilistic polynomial-time,
and let NioLen be a positive polynomial. We say that
(NIP, NIV) is an NIZK proof system for an NP-lan-
guage L, if the following conditions hold:

(1) Completeness. VY x € L of length n, ¢ of
length NlsLen(n), and NP-witness w for x, Pr{II

R
NIP(¢, xr, w):NIV(e,x, I)=YES|=1.

(2) Soundness. Yz & L of length n, Prlo

{0, 1Mot 3 g 4+ NIV (o, =, II) =
YES] is negligible in n .

(3) Zero-Knowledgeness. 3 a PPT simulator NIS
such that, V sufficient large n, Va2 € L of length =
and NP-witness w for r, the following two distributions

R
are computationally indistinguishable: [(o¢’, O') =—
R
NIS(x): (o', I')] and Pr{o <— {0, 1|Nebtenln),
R
n

NIP(o, z, w): (o, I)].

The non-interactive zero-knowledge proof system

for NP can be constructed based on any one-way per-

mutation!®! .

Definition 11 ( witness indistinguishability
WI) ). Let (P, V) be an interactive proof system for
a language L. € NP, and let R; be a fixed NP wit-
ness relation for the language L. That is x € L if
there exists a w such that (r, w) € R;. We denote
by view}:,(f:i) (x) a random variable describing the
transcript of all messages exchanged between V™ and
P in an execution of the protocol on common input
x, when P has auxiliary input w and V' has auxil-
iary input . We say that (P, V) is witness indistin-
guishable for R if for every PPT interactive machine

* 1 1
V7", and every two sequences W' = {w |, ¢; and

w?=| wi}IEL, so that (r, wi)é R; and (r, wzl)
€ R;, the following two probability distributions are
computational indistinguishable:

1
. Plw)
{x,v1ewv.(~)(1);IeL,ze{o,lf' and

Plw )
il,"iequz)(f)*.rel‘.zeao,u“~

WI is a relaxation of ZK. All ZK protocols are
also WI protocols but the opposite direction is not
guaranteed to be true. Actually, it is assumed that
ZK is a significantly stronger notion of security than
WINY | Thatis a WI protocol may lose much security
in comparison with a ZK protocol.

Protocol ( Dwork-Naor 2-round WI proof for
NP2y In Ref. (127 such a protocol is named a
zap.

Let L be an NP-Complete language and R; be
its corresponding NP relation. On a security parame-
ter k£, let p be a positive polynomial and r € L be
the common input and w be the corresponding NP-

witness.

Step 1. The verifier V uniformly selects (and
fixes once and for all) p (%) random strings Ry = ry,
“*, rp(ry of length NIsLen(k) each and sends them
to prover P.

Step 2. The prover P uniformly selects a ran-
dom string r of length NIgLen(%). Then for each 7,
1<\i<<{p(k), P computes an NIZK proof with re-
spect to the common random string »@#,. At last,
P sends r and all these p (&) NIZK proofs
INIZK(r, r@r,—)}‘?iﬁ) to the verifier.

A very interesting property of the Dwork-Naor
2-round WI is that the Ry selected by the verifier can
be fixed once and for all. That is, once Ry is selected
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then it is also fixed for all subsequent executions of
the protocol. It means that Ry can be viewed as a
public-key of the verifier. Zap is also used in Refs.
[13,14].

2 Definition of reduction zero-knowledge

In this section we introduce another relaxation of
simulation zero-knowledge, which we name reduction
zero-knowledge, and discuss the relationship among
simulation ZK, WI and our new notion.

Roughly speaking, a protocol 1 (P, V) is re-
duced to another protocol 2 (P,, V5) if the malicious

verifier V, in protocol 2 has the “same” “knowl-

edge”-extracting ability as that of V| in protocol 1.
To introduce reduction between different protocols,
the difficulty is how to compare the knowledge-ex-
tracting ability of different malicious verifiers in dif-
ferent protocols. Note that the view of a (malicious)
verifier V' * in an execution of the protocol {P, V) is
a transcript including two parts. One part is all the
messages sent by the honest prover P and the other
part is all the messages sent by itsell in response to
messages received from the honest prover. Qur ap-
proach is to ignore the influence of the messages sent
by the malicious verifier on its “knowledge”-extract-
ing ability from the honest prover. It is justified on
the following grounds. On one hand, intuitively, the
messages sent by the honest prover should play a
more critical role for the malicious verifier to extract
“knowledge” from the honest prover. On the other
hand, zero-knowledge is a property of the honest
prover and it is hard to compare the behaviors of dif-
ferent malicious verifiers in different protocols. The
formal definition is given below.

Definition 12 { knowledge-extraction reduc-
tion) . Let protocol 1 (P, V) and protocol 2 (P,,
V,) be two protocols for the same language L € NP.
We say protocol 1 is knowledge-extraction reduced to

protocol 2 if for every malicious verifier V| there ex-

ists a malicious verifier V, such that for each z € L
and its witness w, all the messages received by the
malicious verifier V; from the honest prover P,
(which uses w as its auxiliary private input) in an
execution of protocol 2 on common input r and all
the messages received by the malicious verifier V|
from the honest prover P, {which uses w as its auxil-
iary private input) in an execution of protocol 1 on

common input r are computationally indistin-

guishable.

Definition 13 (reduction zero-knowledge). We
say protocol 1 (P, V) is reduction zero-knowledge
if it can be knowledge-extraction reduced to a protocol
2 {P,, V,) and protocol 2 is simulation zero-knowl-

edge.

Theorem 1. Any simulation zero-knowledge pro-
tocol is also reduction zero-knowledge and reduction
zero-knowledge implies witness indistinguishability.
That is, as a security criterion, reduction zero-knowl-
edge is weaker than simulation zero-knowledge and
stronger than witness indistinguishability.

Proof. First, it can be easily verified that any
simulation zero-knowledge protocol is also reduction
zero-knowledge since any simulation zero-knowledge
protocol is trivially knowledge-extraction reduced to
itself.

Next, we show that reduction zero-knowledge
implies witness indistinguishability.

By the definition of witness indistinguishability,
a protocol for an NP-language L is witness indistin-
guishable if for any malicious verifier V™ the views of
V" in two independent executions of the protocol on
the same common input x € L while the honest
prover using different auxiliary witnesses are compu-
tationally indistinguishable. We remark that to prove
a protocol is witness indistinguishable the messages
sent by the malicious verifier itself in its view can he
ignored. That is, if the messages received by the ma-
licious verifier V'™ from the honest prover in two in-
dependent executions of the protocol on the same
common input x € L (while the honest prover uses
different auxiliary witnesses) are computationally in-
distinguishable then this protocol is witness indistin-
guishable for L. The reason is that we can view V'~
as a PPT next message function NMy * that computes
its next message on common input, its auxiliary input
and the messages it has received from the honest
prover. Then according to the definition of computa-
tional indistinguishability if the messages received by
V" from the honest prover in two independent exe-
cution of the protocol on the same common input 1 €
L (while the honest prover using different auxiliary
witnesses) are computationally indistinguishable then
the messages sent by the malicious verifier are also
computationally indistinguishable.
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Now we show that for a reduction zero-knowl-
edge protocol (for an NP-language L) the messages
received by the malicious verifier from the honest
prover in two independent execution of the protocol
on the same common input x € I. while the honest
prover using different auxiliary witnesses are compu-
tationally indistinguishable. Note that this will be e-
nough to establish the theorem according to above dis-
cussions. The reason is that for a reduction zero-
knowledge protocol there exists a simulation zero-
knowledge protocol for the same NP-language L to
which the reduction zero-knowledge protocol can be
knowledge-extraction reduced. However, for any ma-
licious verifier of the simulation zero-knowledge pro-
tocol, the messages received by this malicious verifier
from the honest prover of the simulation zero-knowl-
edge protocol in two independent executions of the
simulation zero-knowledge protocol on the same com-
mon input r € L (while the honest prover using dif-
ferent auxiliary witnesses) are computationally indis-
tinguishable since simulation zero-knowledge is also
witness indistinguishability. Then according to the
definition of knowledge-extraction reduction, we con-
clude that the messages received by a malicious verifi-
er of the reduction zero-knowledge protocol from hon-
est prover of the reduction zero-knowledge in two in-
dependent executions of the reduction zero-knowledge
protocol on the same common input .« € L. while the
honest prover using different auxiliary witness are al-
so computationally indistinguishable.

We remark that although reduction zero-knowl-
edge is a relaxation notion of the normal simulation
zero-knowledge, but in contrast to witness indistin-
guishability it is assumed that a reduction zero-knowl-
edge protocol loses little security in comparison with a
corresponding simulation zero-knowledge protocol.
This can be seen more clearly in the Feige-Lapidot-
Shamir (FLS) paradigm which is to be addressed in

the next section.

3 Reduction zero-knowledge proof system for
NP

In this section, we first present the Feige-Lapi-
dot-Shamir (FI.S) paradigm and then give a 4-round
public-coin reduction zero-knowledge for NP using
the FLS paradigm under the assumption of existence
of one-way permutations. Furthermore, in practice
our protocol works in 3-round since the first round
messages sent by the verifier can be fixed once and for

all.

3.1 Feige-Lapidot-Shamir (FLS) paradigm

Let L be an NP language and denote by R; the
corresponding NP relation for L. Suppose the com-
mon statement is x € L and the prescribed prover has
an auxiliary private input w such that (x, w)€ R, .
The FLS paradigm consists of two phases and con-
verts a witness indistinguishability protocol into a ze-

ro-knowledge protocol.

In the first phase, called the generation phase,
the prover and the verifier generate a string, denoted
7, which can be viewed as the transcript generated in
the first phase, and fix a relation R” for it. In this
phase, both the prover and the verifier ignore the in-
puts ( the common input and their auxiliary inputs)
and so this phase can be performed even before know-
ing what is the theorem that will be proven. It means
that even a malicious verifier cannot learn “knowl-
edge” from the honest prover in this phase since the
prover is oblivious of his auxiliary private input up to
now. It is also required that even a malicious prover
cannot get a witness w’ for r from its interactions
with the honest verifier in this phase, such that
(r,w )ER".

In the second phase, called the W1 proof phase,
the prover proves (using a WI protocol) that either
there exists a w such that (r, w) & Ry or there ex-
ists a w’ such that (7, w’ )& R’. In practice, in the
second phase the honest prover just uses its private in-
put w as the witness to prove that (r, w) € R|.
However, using the malicious verifier as a subroutine
a simulator can get a witness w’ for ¢ such that (z,
w )€ R’ and then proves (using the W1 protocol)
that it knows a witness w’ such that (7, w’ )€ R".
The witness indistinguishability property is used to
ensure that the malicious verifier cannot tell the dif-
ference between the real interaction and the simulated
one.

3.2 Reduction zero-knowledge for NP using FLS
paradigm

To provide a reduction zero-knowledge proof sys-
tem for NP, and according to the definition of reduc-
tion zero-knowledge we need to construct two proto-
cols: one is a simulation zero-knowledge proof system
for NP, and to which the other protocol can be
knowledge-extraction reduced.

For an NP-Complete language L, suppose Ry is
the corresponding NP relation for L. and the common
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input is x € L of length n. The prover has an auxil-
iary private input w such that (x, w) € R;. Under
the security parameter n, the prover P uses a one-
round perfect binding bit commitment C and the veri-
fier V uses a one-round hash-based bit commitment
HC. Using the FLS paradigm, the two protocols are
presented below. For both protocols, the first three
rounds constitute the generation phase of the FLS
paradigm and the last round corresponds to the WI
proof phase.

Protocol 1 (P, V).

Round 1. V, first uniformly selects a string v in
{0,11" and computes hc, = HC(1", v). Then V, u-
niformly selects (fixes once and for all) p(7) random
strings RV1 =r1, ", rpp of length NloLen(n ) each
just as does in the first round of the Dwork-Naor two-
round WI, where p is a positive polynomial. At last,
V', sends { hc,, RVI) to the prover P;.

Round 2. Py uniformly selects two strings in
{0, 11", ¢ and o, and two corresponding random
strings s, and s,. Then P, computes ¢, = Csl(l", )
and ¢, = Csu(l", o). Pj then uniformly selects a ran-
dom string r of length NIsLen( 7 ) just as does in the

second round of the Dwork-Naor 2-round WI. Final-
ly, P, sends (c,,c,,7) to V.

Round 3. V| decommits to hc,. That is V re-

veals v to P;.

Round 4. P; decommits to ¢, by sending (o, s,)
to V. Then, with respect to (x, ¢,, s, 5., 0Dv),
using the Dwork-Naor 2-round WI P, proves the fol-
lowing statement: y = “there exists a w such that
(x, w)€ R or there exists a string s such that ¢, =
C, (1", v@Bo)”. Thatis, for each i, 1<<i<p(n),
P, computes an NIZK proof for y with respect to

common random string r&@r,;. At last, P; sends (o,

505 INIZKCy, rBr ) 1) 10 V).

Verifier’s decision: If all the p (7 ) NIZK proofs
are acceptable then V' accepts = € L, otherwise, re-
jects.

Protocol 2 (P,, V,).

Round 1. V, uniformly selects (fixes once and
for all) p(n) random strings Ry, =711, s rpw of

length NIslen(n) each just as does in the first round

of the Dwork-Naor two-round WI, where p is a posi-
tive polynomial. Then V, sends sz to the prover

P,.

Round 2. P, uniformly selects two strings in
10, 11", ¢t and o, and two corresponding random
strings s, and s,. Then P, computes ¢, = Cﬁ (1", ¢)
and ¢, = Csn(l", 0). P, then uniformly selects a ran-
dom string r of length NIgLen(n ) just as does in the

second round of the Dwork-Naor 2-round WI. Final-
ly, P, sends (¢;,¢,,7) to V.

Round 3. V, uniformly selects a string v in 10,

11" and sends v to P,.

Round 4. P, decommiits to ¢, by sending (o, s,)
to V5. Then, with respect to (x, ¢;, ¢,, 5,, 0B v),
using the Dwork-Naor 2-round W1 P, proves the fol-
lowing statement: y = “there exists a w such that
(x, w)€ R, or there exists a string s such that ¢, =
C,(1", v€Po)”. That is, for each i, 1<<i<<p(n),
P, computes an NIZK proof for y with respect to
common random string r@r,. At last, P, sends (o,

50, INIZK(y, r@®r) 1707 10 V5.

Verifier’s decision: If all the p(n) NIZK proofs
are acceptable then V', accepts x € L, otherwise, re-
jects.

For the two protocols presented above, we have
the following theorems.

Theorem 2. Assuming collision-resistant hash
functions and one-way permutations exist, Protocol 1
is a black-box zero-knowledge proof system for NP.

Proof. The completeness can be easily verified.
We focus on soundness and zero-knowledgeness.

Soundness. For any common input x & L, since
the hash-based commitment used by the verifier V is
statistically-hiding then a malicious prover P " { even
with unbounded computational power) still cannot
learn v before it commits to the value ¢ and o in
Round 2 (except for a negligible probability). Then
according to the perfect-binding property of the com-
mitment scheme used by the prover, P” also cannot
decommit to ¢, as 0P v in Round 4 (except for a neg-
ligible probability). Also note that since x & L there
also exists no witness for + € L. It means P " cannot
get a witness for ¥ in Round 4 (except for a negligible
probability). Then the soundness of Protocol 1 is fol-
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lowed from the soundness of the Dwork-Naor two-
round W1 proof system.

Zero-knowledgeness. We remark that the same
techniques introduced in Ref. [7], i.e. the standard
“rewinding” and approximation estimation of the
probability on verifier’ s correct decommitments, can
be applied here to show Protocol 1 is really black-box
Roughly,

zero-knowledge. while oracle accessing

V™, the black-box simulator SV‘ works as follows.

SY first runs V" to get Ry and hc, sent by V* in
Round 1. Then for two arbitrary “garbage” values,
t" and 0" in 10, 11" and two corresponding random

strings s, and 5,7, SV

=C, (1",0") to V*. Then V" decommits hc, and

sends ¢, = C, (17, t’) and ¢,

reveals v to SY . After getting v, SY rewinds to
Round 2 and randomly selects a string o and sets ¢ =

ofPv. Then for corresponding random strings s, and
5,, SY sends ¢, = C"z(]"’ t)and ¢, =C, (1", 0) to
V*. If V" decommits hc, correctly, thatis V™ re-

veals v correctly again, then SV. will go to Round 4
with s, as its auxiliary witness and complete its simu-
lation. Here we remark that to make the simulator
work in expected polynomial-time, one needs to ap-
proximately estimate the probability for that V'™ de-
commits correctly in Round 3. Readers are referred to
Ref. [7] for more details. The zero-knowledge prop-
erty is ensured by the computational-hiding of the
commitments used by the prover P and by the wit-
ness indistinguishability of the Dwork-Naor 2-round
WI protocol.

Now, we consider Protocol 2 in comparison with
Protocol 1. We remark that we do not know how to
construct a zero-knowledge simulator for Protocol 2
and it is certainly impossible to construct a black-box
zero-knowledge simulator for Protocol 2 ( assuming
NP is not included in BPP) since Protocol 2 is public-
coin and Goldreich et al. have shown that only lan-
guages in BPP have a constant-round black-box zero-

[S) " The major

knowledge public-coin proof system
difference between Protocol 1 and Protocol 2 is that in
Protocol 1 the value v in Round 3 is determined by
hc,(the “determining” message) in Round 1 but in
Protocol 2 there is no such “determining” message
and so the value v in Round 3 of Protocol 2 may ma-
liciously be a function of the messages sent by the
honest prover in Round 2. This is just the reason that

the standard rewinding technique fails in showing

Protocol 2 is also zero-knowledge.

But, we argue that it is somewhat unfair for
Protocol 2 to say that the malicious verifier V, gains
“knowledge” from P, (since we cannot prove Protocol
2 is zero-knowledge) while the malicious verifier V|
learns nothing from P on the following grounds: on
one hand, although the value v sent by V, in Round
3 is not determined and may be maliciously dependent
on the messages sent by the honest P, in Round 2,
but up to Round 3 V; has not learnt any knowledge
by sending a malicious value v in Round 3 since the
first three rounds constitute the first phase of FLS
paradigm and we have argued that a malicious verifier
cannot learn “knowledge” in the first phase of the
FLS paradigm. On the other hand, based on the
above discussions one may further argue that although
V, cannot learn “knowledge” in the first three
rounds but the malicious value v may affect the final
distribution of (x, ¢, ¢4» 5., 0@ v) on which the
Dwork-Naor 2-round W1 is finally applied in Round 4
and so V, may maliciously extract “knowledge” from
the messages sent by P, in Round 4. Here, we argue
that the Blum’s coin flipping over telephone protocol
is applied to efface the effect caused by such a mali-
cious v. Formally, we show in below that Protocol 2
is really reduction zero-knowledge.

Theorem 3. Assuming one-way permutations ex-
ist, Protocol 2 is a reduction zero-knowledge proof
system for NP.

Proof. For each malicious verifier Vz* of Proto-

col 2 we construct a malicious verifier V; of Protocol
1 that sets vain Round 1 just to be sz by running

V; . Then, for each common input x € L. and its
corresponding witness w, we say that the messages
received by V; from P,(which uses w as its auxil-

jary private input) and the messages received by V|
from P;(which uses the same w as its auxiliary pri-
vate input) are computationally indistinguishable.
First, in both protocols the messages sent by honest
provers in Round 2 are computationally indistin-
guishable due to the computational-hiding of the com-
mitment scheme used by the honest prover. Second,
for the messages sent by the honest provers P; and
P> in Round 4 of both protocols the difference lies in
the p(n) NIZK proofs. Note that the distributions
of the common random strings used for these NIZK
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proofs in both protocols are identical since va is set
to be sz. Then the difference between the p{(n)

NIZK proofs sent by P, and the p(n) NIZK proofs
sent by P is just the distributions of 0D wv. Howev-
er, according to the property of Blum’s coin {lipping
over the telephone protocol, the distributions of oD v
in both protocols are all pseudorandom. It means that
the distributions of 0 v in the two protocols are just

computationally indistinguishable.
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